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A random configuration of objects in space, or a stochastically rough boundary, is 
considered to scatter an incident acoustic or electromagnetic wave having harmonic 
th~ae dependence e~'~ In the case of a stochastic surface, Beckmann has compared the 
Kirchhoff solution with his approach, which employs random walk. The latter approach 
is used to demonstrate the Rayleigh-distributed amplitude of a field scattered by a very 
rough surface. This demonstration requires the conjecture that large standard deviations 
in the random phases of the scattered elementary waves result in an incoherent scattered 
field. Beckmann's conjecture has not been rigorously proven. However, in this paper, 
incoherence of the scattered field and broad distributions, over many cycles, in the 
phases of the elementary waves are both shown to be implied by a third condition, 
which is defined. Furthermore, the random phase of an incoherent field is shown to be 
statistically independent of its amplitude and uniformly distributed on a 2~r-rad interval. 

KEY WORDS: Propagation ; acoustics ; electromagnetic waves; scattering; incoherence; 
random walk; uncertainty principle. 

1. I N T R O D U C T I O N  

The tota l  acoust ic  or  e lec t romagnet ic-wave field scat tered by a rough  surface or  by 
any conf igurat ion o f  scatterers,  a t  a given po in t  in space or  in a given direct ion,  may  be 
considered as a sum of  e lementary  waves in mu tua l  phase  interference.~a) The incident  
field has ha rmon ic  t ime dependence  e i~t, where ~o is the  angular  frequency,  and  is 
considered to or iginate  f rom a c o m m o n  po in t  or  a c o m m o n  direct ion.  

In  Fig. I(A),  a g roup  o f  objects  is i l luminated  by  a po in t  source. Each  scat terer  
reradia tes  the incident  wave with a changed ampl i tude  and  phase ,  bo th  o f  which are 
compl ica ted  funct ions o f  the posi t ion,  shape, and  or ien ta t ion  o f  the  scatterer ,  as well 
as o f  its acoust ical  or  electrical proper t ies ,  m Let t ing Pj  be the phase  change at  the 
j t h  scatterer,  j = 1, 2 ..... and  denot ing  its dis tances f rom the source and  receiving 

1 Electric Boat Division, General Dynamics Corporation, Groton, Connecticut. 
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(A) Incident wave-field from common point-source scattered by a configuration of objects. 
(B) Incident plane-wave field from common direction scattered by a rough surface. 

points by d~j and d~.j, respectively, the received phase of the scattered wave due to the 
j th  scatterer is given by m 

q~ = P~ -F (2~r/)t)(d~j -F d~j) (1) 

where the term cot for the phase of the source is suppressed, and A is the wavelength of 
the incident radiation. The received amplitude of this scattered wave is denoted by 
A;, and is always taken to be nonnegative. Therefore, the amplitude A and phase q~ 
of the total scattered field at the receiving point are determined by the sum of complex 
numbers m 

M 

Ae ~r = ~ A~ exp(iq~), A i> 0, --rr ~< ~b < rr (2) 
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where M denotes the total number of scattering objects contributing significantly to 
the total field at the receiving point. 

In Fig. I(B), a rough surface is illuminated by a plane-wave field. The wavelength 
of the incident radiation is considered to be small with respect to the amplitude of the 
surface roughness. Then, to a first approximation, the contributions to the scattered 
field in a particular direction originate from those segments of the surface whose 
slopes are favorable to locally specular reflections ~5~ in that direction. In addition, the 
radii of curvature of these segments must be large enough with respect to the radia- 
tion's wavelength so that most of the energy there is reflected in the locally specular 
direction, c5~ The phase of each elementary wave emitted from a corresponding 
surface segment can be determined from an equation similar to Eq. (1), tG~ and gener- 
ally depends on the position and slope of the segment as well as on the acoustical or 
electrical properties of the surface. Therefore, the amplitude A and phase ~ of the 
resultant scattered field in a particular direction are given by Eq. (2). It will be assumed 
in this paper that the summation in Eq. (2) is finite or can be truncated with little error 
after some number M of terms. 

If the array of scatterers is random, or if the surface is stochastic, then the vectoral 
terms in Eq. (2) are random quantities, and the summation becomes a random walk. 
I f  the amplitude of the boundary roughness, or the uncertainty in position of each of 
the scatterers, is large with respect to the radiation's wavelength, and if the grazing 
angle of the incident field upon the scattering region is not too small, then each 
random phase ~j  is observed to be distributed over many cycles3 z.6~ [Note Eq. (1) 
for small A.] Owing to the periodicity of the function exp(iq)j), the sum in Eq. (2) 
depends only on each primary phase ~ ,  which is the actual phase qb~ mapped into 
some interval of length 2~r radians by adding or subtracting the necessary multiple 
of  2rr from each outcome. 

In mathematical terms, the randomly scattered field is said to be incoherent if ta~ 

M 

EfA ) = Z E(A?) (3) 
5=1 

where E denotes mathematical expectation, and where it is noted that the intensity of 
a wave is proportional to the square of its amplitude. Observing that exp(i~b~) = 
exp(i~b~), it can be shown, using Eq. (2), that 

M 

E(A ~) = ~ E(Aj ~) + 2E(T) (4) 
j = l  

where T is the sum of the "cross" terms 

T = ~ ~ A~.Ak(cos qbj cos ~b~ + sin ~b. sin ~bk) 
k C j  

(5) 

If  the primary phases are independent random variables uniformly distributed on 
their 27r-rad intervals, then E(T) vanishes, as observed in ref. 6, when the At are 
assumed to be constants. Then, Eq. (4) reduces to the incoherence condition, Eq. (3). 
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However, if random As are considered, then the additional stipulation that each Aj 
be independent of every primary phase ~b~ is observed to be needed in order that E(T) 
vanish. Therefore, in this paper, incoherence is defined to satisfy the following three 
conditions: 

(i) Each primary phase ~bj, 1 ~ j ~ M, is uniformly distributed on its 2~r-rad 
interval. 

(ii) The primary phases are totally independent random variables. 

(iii) The random vectors (A1 .... , AM) and (~1 ,-.., ~M) are independent. 

If the scattered field is not only incoherent, but also satisfies the conditions: 

(iv) the random amplitudes A~ ,..., AM are totally independent; 

(v) the standard deviations of the At are all similar in magnitude; 

(vi) M is large; 

then the resultant amplitude A of the scattered field can be shown to be nearly 
Rayleigh-distributed? 2r Furthermore, the resultant phase ~ is observed to be inde- 
pendent of A and uniformly distributed on the interval (--7r, w). (2~ These conclusions 
follow directly by applying the central limit theorem to the real and imaginary compo- 
nents of Eq. (2). 

The model in Fig, l(A) has been applied to the propagation of vhf and uhf radio 
signals beyond the horizon by their scattering in the ionospheric and tropospheric 
layers of the atmosphere, m The index of refraction in these layers varies randomly 
from point to point as well as with time. Therefore, as a first approximation, these 
tayers are partitioned into "blobs," i.e., inhomogeneities of uniform refractive indexes, 
which differ from that of the atmosphere into which these scatterers are emersed. 
These blobs are imagined to vary randomly in position (as well as in shape and orien- 
tation). Within a layer, the volume which is illuminated by the transmitting antenna 
and which contributes to the field at the receiving point is usually large enough to 
contain many such blobs. Therefore, condition (vi) is satisfied. If, for the most part, 
the random motions of the blobs are statistically independent, then conditions (ii) 
and (iv) are satisfied. If the illuminated volume is statistically homogeneous, then 
condition (v) is satisfiedl In practice, the signals received from ionospheric or tropos- 
pheric scatter are found quite often to be Rayleigh-distributed. m Therefore, it seems 
plausible that somehow the remaining conditions, (i) and (iii), are also satisfied. 

An analysis of Eq. (1) shows that the phase of the arrival from each blob must have 
a standard deviation much larger than 27r radians.m Beckmann indicates heuristically, 
though not rigorously, that actual phases which are broadly distributed over many 
cycles yield primary phases that are uniformly distributed on their 27r-rad intervals. (3~ 
If this proposition were proven, then condition (i) would be satisfied. Condition (iii) 
has not been considered. 

Short-wave radiation scattered from a rough boundary is also found to be often 
Rayleigh-distributed. The model in Fig. I(B) has been applied to this problem, (71 and 
a discussion similar to the preceding one can be presented. 

The problem here is to derive a relationship among conditions (i)-(iii) together 
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with the condition of broad distributions in all the actual phases. The Rayleigh-distri- 
buted field, as well as the additional conditions (iv)-(vi), will not receive further 
consideration in this paper. Furthermore, no direct assumption on the statistical 
independence of the actual phases q~l ,..-, qSM will be made; that is, all random 
scatterers will not explicitly be assumed to have uncorrelated positions. Although 
condition (iii) is defined in terms of the primary phases, the independence of the 
actual phases from each A~ is also not assumed. Reducing these restrictions generalizes 
the problem so that it may be applicable to the multipath interference considered in 
certain studies on ducted propagation, where one of the reflecting boundaries is 
random in shape. (sa~a3) In particular, the individual arrivals at a receiving point may 
be considered, under proper conditions, to be components of an incoherent field. Its 
mean intensity would then be given by Eq. (3). 

In Section 2, the joint probability density function of the amplitudes Az ,.,., AM 
and the actual phases q~z ..... CM of the elementary waves is considered. The Fourier 
transform of this function is taken with respect to just the phase variables, and a 
characteristic property of the Fourier spectrum for incoherence is derived. A special 
case of this property is shown, in Section 3, to yield broad distributions in all the actual 
phases. In Section 4, the joint and marginal probability distributions for the resultant 
amplitude A and phase q~ of an incoherent field are determined. A summary follows 
in Section 5. 

2. A N A L Y S I S  O F  T H E  E L E M E N T A R Y  W A V E S  

The joint probability density function (pdf) of (A1, ~1 ,  A2, r ..... AM, qbM) shall 
be denoted by h(ax, 41 ..... aM, CM), while the joint pdf of (Az, Cz ..... AM, ~M) is 
denoted by/~(al,  r ..... aM, CM). Without loss of generality, all primary phases Cj 
are assumed to be distributed on the same 2zr-rad interval, namely, the interval 
(--zr, zr). Then, it can be shown that (z) 

]~(al , 41 ..... aM, CM) 

= kl=--c~ k2=--oo kM=--~  

for - -~ r~ r  j =  l ..... M, 
~0, for any r elsewhere 

(6) 

Therefore, ~(at, r ..... aM, r can be represented by a Fourier series in the variables 
r when --Tr < r < ~r, j = 1,..,, M, and is given by 

/~(al, Cz ..... aM, r  

= ~, ~ "'" ~ Bn~,w..,~M(al,...,aM)exp(--i~njr (7) 
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With the aid of Eq. (6), the coefficients B,,1...,,M(a 1 ,..., am) are observed to be 

B.1...,.~,(al ..... aM) 

= (2~r) -M j "'" /J(al, r ..... aM, q~M) exp i n ~  dr dr dCM 
--~r --~r --Tr j=l 

----- (2rr) T M  . . . . . .  h(al ,  r q- 2kl rr ..... aM, dpM + 2kMrr) 

j = l  

where it is noted that 

exp i 2 n y ( r  = exp i 2  n~q~ 
j=l j=l 

Therefore, from Eq. (8), it can be shown that 

B,r..,,M(al ,..., aM) 

oo o~~ ..... aM, exp ( M y )  = ( ' ( O, OM) aol.., aOM (9) 
~ t  

--r  - - ~  j=l 

The Fourier transform of h(a , ,  41 .... , aM, Cm) with respect to the variables r 
is given by 

C h ( Y  1 , . . . ,  I ' M  ; a 1 . . . . .  am) 

= (. "'" . h(al ,  q~l ~M) i dr "'" d r  (10) 
. /  -oo --co ]=I 

Therefore, by comparing Eqs. (9) and (10), the Fourier coefficients in Eq. (7) are (2~r) T M  

times the Fourier transform of h (with respect to the variables Cj) evaluated at the 
integer quantities n l ,  nz ,..., nm.  It is observed from Eq. (10) that 

Ch(0, 0,..., 0; a 1 ,..., aM) . . . .  h(al , q~l ..... aM, c~M) d~l "'" d~M 
--09 --00 

= g(al ..... am) (11) 

where g(al, . . . ,  aM) denotes the marginal pdf of (A1 ,..., AM). Therefore, from Eqs. (6), 
(7), and (9)-(11), it can be shown that 

[*(al, qbl ,..., aM, ~M) = U(q~j [g(al ..... aM) + eh(al, ~1 .... , am,  era)] (12) 
.= 

where u(x) is the pdf  of a random variable uniformly distributed on the interval 
(--~r, rr), so that 

u(x) = t (2rr)-l' for --rr ~< X < ~r (13) 
tO, for x elsewhere 

Arnold D. Seifer 
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and En denotes the function whose Fourier expansion is 

e ~ ( a l ,  r . . . . .  a m ,  CM) 

. . . .  Ch(nl  .. . .  , n M ; a 1 , . . . ,  a m )  exp - - i  ~ nj 
nl=--oD ~ cO $~1 

(14) 

The prime immediately following the ~2's in Eq. (14) is inserted to indicate that the 
term for which nz = n~. - -  - -  n M =  0 is omitted from the summation. From Eq. 
(12), conditions ( i ) - ( i i i )  for incoherence are observed to be satisfied if and only if 
e~ ~ 0 a.e. 2 

Applying Parseval's equation to the Fourier series in Eq. (14), we obtain 

�9 " l(2~r) - u  eh(az, r . . . . .  a M ,  r = dr "'" d C v  
--Tr --'/r 

= (27r) -M [ Ch(n l  . . . . .  nM ; a l  .. . .  , aM)] z (15) 

From Eq. (15), Eh ~ 0 a.e. if and only if the Fourier coefficients in Eq. (14) vanish. 
Therefore, the scattered-wave field, given by Eq. (2), is incoherent if and only if 

Ch(nz . . . . .  nM ; a l  , . . . ,  aM) =- 0 (16) 

for all integer values of nl,..., r iM,  not all of  which are zero, and for all real values of  
al  .... , a M ,  except possibly for a collection of vectors (a l  . . . . .  aM) of measure zero. 
Then, from Eq. (I0), incoherence is equivalent to requiring the Fourier components 
of h ( a z ,  r , . . . ,  a M ,  CM), as a function of r .... , C M ,  to have zero spectral densities 
whenever their angular frequency vectors (vl  .... , vM) differ from the zero vector 
(0, 0,..., 0) and have all integer components. 

An example of h for which Ch =/= 0 at noninteger values of vl .... , VM is given by 

M 

h(a l  , r . . . .  , a M ,  CM) = ]--[ g'(r g ( a l  .. . .  , am)  (17) 
j = l  

where a(x) is the pdf  of a random variable uniformly distributed on the interval 
(q, q + 2k~-). The quantity k is taken to be some positive integer, and q is some real 
number. Using Eq. (10) directly, Ch is shown to satisfy Eq. (16). However, from 
Eq. (17), the actual phases are observed to be independent, as are the random vectors 
(A1 . . . . .  A M )  and (r ,.-., q~M). Therefore, the policy stated in Section 1 is contradicted. 
Furthermore, the condition requiring broadly distributed actual phases possesses no 
significance here. In the following section, a more satisfactory class of  pdf's h is given, 
which is consistent with the motivation introduced in Section 1. 

"2 The statement ~n --= 0 a.e., where a.e. is the abbreviation for "almost everywhere," means that the 
collection of all points (al, Cz ..... aM, ~M) at which ~n ~ 0 form an event of zero probability 
(i.e., zero measure). See, for example, ref. t6. 
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3. T H E  B A N D - L I M I T E D  CASE 

In this paper, the pdf h(a~, r ,..., aM, CM) is defined to be band-limited (with 
respect to the variables r ,.-., CM) if, for some positive number b, Q(vz  ,..., VM; 
a, ..... a~) ~ 0 a.e. for all real values of a t whenever the v: are real-valued and at least 
one v~ satisfies ! vk [ > b. If  b is the smallest such�9 number for which this condition 
holds, then b is called the bandwidth of h (with respect to the variables r ,..., r 

If the bandwidth b is smaller than unity, then Eq. (16) is valid for all integer values 
of na ,..., riM, not all of which are zero. Therefore, the scattered field is observed to 
be incoherent if h is band-limited with bandwidth b, and if b < 1. 

Denoting the marginal pdf of the actual phase ~j by pj(r 1 ~< j ~< M, and 
letting C~5(v) be its characteristic function, it can be shown that 

cc o~ 

C~o,(l:) = -  f ' ' "  ( Ch( l ) f~lJ , lta2~" , - - . ,  I"(~MJ ; g l  . . . .  , aM) da, ... daM 
--oc o --09 

(18) 

where 3~ 5 denotes the Kronecker delta, so that 8k: = 0 for k :/: j, and 8jj = 1. 
Therefore, if h is band-limited with bandwidth b, then p~- is band-limited with some 
bandwidth b:. That is, C~j(v) = 0 whenever v is real-valued and I v I > b~ ; further- 
more, b s is the smallest positive number for which this condition holds. It is observed 
that 

b : ~ b ,  1 ~ j ~ M  (19) 

Therefore, if h is band-limited, then p~(r cannot vanish identically outside a finite 
intervalJ 10) 

A band-limited h, then, implies, in a qualitative sense, broadly distributed actual 
phases Cj ,  1 ~< j ~< M. In order to quantitatively investigate this problem, the 
uncertainty principle ml is used. 

For each actual phase ~ j ,  two other random variables shall be defined. The 
modified-~:,  denoted by r is the random variable whose pdf is given by 

co 

= tp,(+)J:/f E+,,(t)l at, 
--co 

1 ~< j ~ M (20) 

and the speetral-q)j, denoted by ~ ] ,  is the random variable whose pdf is given by 

/: p~l(v) = I c~j(v)l 2 I cv~(t)l z dt, 1 ~ j <~ M (21) 
~co 

In these terms, the uncertainty principle m) states that 

a(~ hI' ']), ~ r -.1) > �89 1 ~ j ~ M (22) 

where cr denotes standard deviation. Therefore, the more narrow the Fourier spectrum 
ofpj(r the broader will be the distribution of ~ .  ; and the more narrow the distribu- 
tion of r  the broader will be the Fourier spectrum ofp~(r 
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Although the dispersion of  the outcomes of q~j about its mean value is usually 
measured by e(q~j), Eq. (22) requires that this dispersion be measured by a(q~m]). 
This assumes that the shape of the graph of [pj(q~)]2 is not too different from that of  
p~(~). Similarly, the dispersion of  the Fourier spectrum ofpj(q~) about the spectrum's 
central moment ought to be measured by the standard deviation of the random varia- 
ble qS~sl, whose pdf is given by 

/f  ;~J(~) = I c~j(~)l J c~j(t)l at (23) 

However, if the graphs of ] C~(v)] and ] C~(v)[ 2 are similar in shape, then (z(q~ ~1) 
may be used as reliably as ~(05~1). 
: It is observed that the magnitude of the characteristic function C~(v) is an even 
function of v. Therefore, from Eq. (21), it can be shown that 

cr(~ ~J) = "trErr~[dx2m/ztt j j jj , 1 ~< j ~ M (24) 

where E denotes mathematical expectation. Substituting Eq. (24) into Eq. (22), we 
obtain 

~(~J){E[(~'~)~]}I/~ > ~,  1 ~< j ~< M (25) 

Since p~(~) is band-limited with bandwidth b~, then, from Eq. (21), p~l(v) = 0 
whenever ] v ] > bj.  Therefore, using Eq. (19), it is observed that 

From Eqs. (25) and (26), we obtain 

o'tw a- , > �89 -1, 1 ~ j ~< M (27) 

Therefore, Eq. (27) exhibits a lower bound on the standard deviation of each modified- 
qSj, 1 ~ j <~ M, in terms of the bandwidth of a band-limited pdf h. It is observed 
to decrease monotonically with increasing b and equal the value �89 rad when b = 1. 

In this section, a band-limited pdf  h has been shown to imply an incoherently 
scattered field if its bandwidth b is smaller than unity. Furthermore, the actual phases 
have been found to be broadly distributed random variables, and the standard 
deviations of the modified-~- are all greater than or equal to (2b)-L 
Neither has the statistical independence among the actual phases been explicitly 
assumed, nor has that between the actual phases q~j and the amplitudes Ak �9 However, 
it should be mentioned that whether these conditions are implied by a band-limited 
h remains a theoretical question, and is open to further investigation. 

4. T H E  T O T A L  SCATTERED FIELD 

In this section, the joint pdf of (1i, ~), denoted by t(a, ~), is consider. The func- 
tion t(a, d?) is derived in terms of  the joint probability distribution of (A1, q51 ..... 
AM, ~bM), and is presented in the form 

t(a, dp) = u(~)[gr(a) -k 8h(a, 4)] (28) 
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where gr(a) is determined from g. The function u(r is given by Eq. (13), and the func- 
tion ~h(a, q~) is determined from e~ later in the section. 

4.1. Mathematical Analysis 

If the rectangular-coordinate 
Ae ~ are defined by 

X; = A; cos q~j, 

and 

X = A cos O, 

then Eq. (2) is equivalent to 

components of A~ exp(i~bj), j = 1 ..... M and 

Y~-=A~sinq~j, 1 ~ < j ~ < M  (29) 

Y = A sin �9 (30) 

Therefore, using Eq. (32), the joint pdf q(x, y) of (X, Y), which is a marginal distribu- 
tion of (X1, Y1 ..... X~t-1, Y~t-1, X, Y), is given by 

f m f : . . . . o o f ~ _ o ~  . . . .  ( X1 ' . . . . . .  q(x, y) = j r Yl XM-1, YM--1 

• dxl dyl ~ dXM_~ dy~_z 

M-1 M--1 ~) 
x - - ~  xr y - -  ~ y  

j=l i=l 

(33) 

Using Eq. (29) to transform Eq. (12) into rectangular coordinates, we obtain 

r(xl , Yl .... , XM , YM) 

] = (2")-M (Xj~ + y#)-~/~ {g[(Xa 2 + y~)t/2 ..... (XM2 + y~D1/2] 

+ eh[(X ~ + y2)~/2, F(x~, YO ..... (xM 2 + y,vr~) ~/~, F(XM, YM)I} 

where 

t-Arccos[a(a~ + b~)-l/~], for b < 0 
F(a, b) = arg(a + ib) ~ ~ Arccos[a(a 2 -1- b2)-1/2], for b ~> 0 

(34) 

(35) 

can be shown to equal unity. Then, 

S(Xl, Yl ," ' ,  XM-1, YM--1, X, y) 

r (x 1 , Yl ,..', XM-1, YM--1, \ 

M-1 M-1 j) 
x -  J=~Y~ x;,  y -  ~ y (32) 

The joint pdf of the random vector (Xz, Y1 ..... XM, YM) is denoted by r(xz, y~ .... , 
XM, YM). Using Eq. (31) as a transformation of the random vector (X1, Y1 ,..., XM, YM) 
to the vector (XI,  Y~ ,..., J(M-a, YM-x, X, Y), the joint pdf of the second vector is 
denoted by s(x~, Yz ,..., xM-~, Y~t-z, x, y), and the Jacobian of this transformation 

M M 
X =  ~ X j ,  Y =  ~ Yj (31) 

j=l j=l 
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and ~ - I M 1  (X j  2 -~- yj2)-1/2 is the Jacobian of  the t ransformation.  Substituting Eq. (34) 
into Eq. (33) and changing the variables of  integration to those of  polar  coordinates,  
we obtain, after simplifying, 

;o ? 
q(x, y) = (27r) T M  -" 

~M_I=-- ~- �9 aM_l= 0 qSl=--zr- al= 0 

i( x • - -  ~ a~-cos + y - -  ~ a~sin 
j=1 j = l  

• g al ..... aM-l ,  - -  ~ a ; co s  + y - -  ~ a t s in  
j = l  j = l  

+ eh al, ~b, ..... au-z,  ~M--1, - -  2 at cos + Y -  2 at sin , 
j=l ~ =1 

F -- y, a; cos ~ ,  y - -  Z at sin ~ dal d~l"'" d ~ , _ l d ~ - i  (36) 
j = l  J= l  

Recalling that the joint  pdf  of  (A, cb) is denoted by t(a, (o), and using Eq. (30) to 
t ransform (X, Y) to  (A, @), we obtain 

taq(a cos q~, a sin ~), for  a ~> 0 and --Tr ~< q~ < 7r (37) 
t(a, qS) = t0, for  a or d? elsewhere 

Not ing the identity, 

c o s ~ - -  ~ a j cos  + s inq~--  ~ a~sin 
j=l j=l 

M--I 

= a~ - 2a y~ at cos(,L- - 'b) 
J=l 

M--I M--I 

+ ~ Z aja~[cos(~b~. - -  q~) cos(q~k --  q~) + sin(q~j - -  ~) sin(q~ - -  ~)] (38) 
j= l  /e=l 

Eqs. (36) and (38) yield, for  a / >  0 and --Tr ~< q~ < 7r, 

q(a cos ~, a sin ~) 

f = (2zr) T M  "'" a, al ..... aM_l, 
--.rt 0 --,n- 0 

cos(S1 - -  (~),..., cos(6~_l  - -  ~), sin(6x - -  (~),..., s in(6~_l - -  6)] 

• dal d4~1"'" dam_x d~M-1 + (2zr) -z a-Z3~(a, d?) (39) 
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where 

f~(a, al ..... aM-l, ~1 ..... ~M--I ,  711 ... . .  7]M--1) 

[6~/M( a,  a l  , - . ,  aM-- l ,  ~:t ~..-, ~M--: ,  "ql ..... r/M--l] -1 

• g[a~ . . . . .  a M - - l ,  l~7[M(a, a l  ..... aM-- l ,  ~7: ..... ~:M--I , '~l ..... ~M--I)] (40) 

and 

6~M(a, a: . . . . .  aM_:, ~1 ..... ~:M--1 , 711 ..... ~M--1) 

M--1 M--1 M--: ] :/2 

= a 2 - 2 a  Z a f s +  Z Y, a,a~(~,~kq-~Tsrla) 
5=: 5=1 /c=1 

(41) 

The quantity 8h(a, 6) in Eq. (39) is given by 

2~r)-(M-:)a "'" f,h(a, 6, a , r ,..., aM-l, CM-0 
a, ,(a,  4 ) =  - .  o -~  o 

• daa d6l "'" daM_: d6M_l, for a >~ 0 
O, for a < 0  

(42) 

where 

feb(a: ~ r o l  :~ 61 ... . .  a M - l ,  CM--1) 

= {~[M[ a, a l  , " . ,  a M - l ,  COS(61 -- 6 )  ..... COS(6M- 1 - r  sin(6: - 6) ..... sin(6v_: - r  

~ l a:, 6: , . . . ,  au_:, 

6 

• 6 M - ~ ,  

cos q~ -- Z ascos § sin 6 -- Z a5 sin , 
j=l  5=1 

a M-1 M--I J) 1 F c o s 6 - -  ~ a j c o s 6 ~ , a s i n 6 - -  ~ as s in6  
j=l  j = l  

(43) 

Letting ~bj = 65 -- r 1 ~< j ~< M -- 1, in the integral in Eq. (39), we obtain, for 
a >~0 and --~r ~ r < ~', 

q(a cos 6, a sin 6) 

~ - r  ~ ~r-,~ 

= (21r)-~t f f ' " f  f fa(a, al ..... aM-i, COS 61 ..... COS CM-1 , 
--r 0 v--~r--~ 0 

sin ~b~ .... , sin CM-O da~ &bl... dai_i d~bi_~ 4- (2~') -~ a -~ 8h(a, 6) (44) 

Since the integrand in Eq. (44) is periodic in each @ with period 2~- tad, and 
since each ~b;interval of integration, namely (=-~r -- 4, ~ r~  6), is always of length 
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27r rad, then the integral in Eq. (44) is independent of r Therefore, from Eqs. (37) 
and (44), we obtain Eq. (28), where gr(a) is given by 

I (27r)-(M-l~a "'" fg(a, al ..... aM-z, COS r ..... COS ,6M-1, 
- ~  ~ o  ~ - ~  ~0 (45) 

gz(a) ~ 0, sin r ..... sin CM-z) dal dr "'" daM_z dCM-Z, for a ~ 0 
I for a < 0  

As claimed earlier, ~h is determined from eh, and is given by Eqs. (41)-(43). Also, 
g r  is determined from g, and is given by Eqs. (40), (41), and (45). 

If  E~ ~ 0, then Eqs. (42) and (43) show that ~h ~ 0. Since Et, ~ 0 is equivalent to 
incoherence, therefore Eqs. (13) and (28) show that the resultant phase of an incoherent 
field is independent of the resultant amplitude and is uniformly distributed on the 
interval (--Tr, ~-). The marginal pdf of the resultant amplitude is given by Eq. (45). 

From Eqs. (2), (38), and (41), it can be shown that 

A M = GdM[A , A 1 ,..., A M - l ,  COS((P 1 - -  (P) , . . . ,  COS( (PM_I  - -  (~) ,  

sin(~b~ - -  (b) ..... sin(~M_X - -  ~b)] (46) 

Therefore, the function OIM gives the amplitude of the Mth elementary vector, 
AM exp(i~M), in terms of the resultant of all M elementary vectors, Ae ~,  and of the 
first M -- 1 elementary vectors, Aj exp(iq)~), 1 ~< j ~< M -- 1. 

The presence of 61'm in the integrals in Eqs. (39), (42), (44), and (45) is due to the 
product of two Jacobians. The first Jacobian results from the transformation that 
yields Eq. (34), and the second is needed in Eq. (36), where the variables of integration 
were changed from those of rectangular coordinates to those of polar coordinates. 

Since the random variables A;,  1 ~< j ~ M, and A never assume negative out- 
comes, the functions h,/~, g, and ~ vanish if any a~. is negative. Therefore, the interval 
of integration for the variables aj ,  I ~< j E M -- 1, in Eqs. (36), (39), (42), and (45) 
is taken to be (0, co) instead of (-- co, co). Also, the joint pdf t(a, r as well as the 
functions gT and 8h, are defined to vanish if a < 0. 

4.2. Remarks 

It should be mentioned that the absence of the random amplitudes Aj from 
consideration reduces the problem treated in this paper to one that was previously 
investigated in the literature, ~14,15) though not on propagation. However, from the 
definitions of incoherence, the amplitudes A; of the elementary waves must also be 
considered: Condition (iii) of Section 1 is needed to demonstrate Eq. (3) for random 
A5 as well as to derive the independence of A from q). 

5. C O N C L U S I O N  

This paper defines the incoherence of a scattered field in terms of the amplitudes 
and primary phases of the elementary waves. However, conditions involving the 
actual phases, rather than the primary phases, are derived for incoherence. 
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The joint probability density function of the random variables A z ,  q~l ..... A M ,  
q~M, denoted by h (a l ,  d?t ..... a m ,  CM), is treated by taking its Fourier transform, 
denoted by Q ( v  1 ..... v~  ; al ..... aM), with respect to only the variables r ..... CM" 
The scattered field is shown to be incoherent if and only if Ch(nt ..... nM; at ..... aM) 
vanishes, independently of  the a j ,  for all integer values of nl ..... riM, not all of  which 
are zero. Therefore, if h is band-limited, so that Ch vanishes whenever any vj exceeds, 
in magnitude, the bandwidth b, and if b smaller than unity, then the scattered field is 
incoherent. Furthermore, by using the uncertainty principle, a band-limited h is shown 
to imply broad distributions for all the random phases r ..... q)M. 

The resultant phase r of  an incoherently scattered field is shown to be indepen- 
dent of the resultant amplitude A and uniformly distributed on the interval ( - -~ ,  ~r). 
These properties of A and ~b, which are also valid for a Rayleigh-distributed field 
resulting from the addition of conditions (iv)-(vi), are therefore shown to require only 
the conditions (i)-(iii) for incoherence. Furthermore, under the conditions of  inco- 
herence, the probability density function of A is derived in terms of the joint probability 
density function of A t  ..... A M .  
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